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Abstract

We quantify the value of demand visibility from smart refrigerators in gro-

cery retail. Using simulation, we decompose price effects into components from

(i) demand visibility, (ii) markdown pricing, and (iii) consumer picking behav-

ior. Visibility value depends on grocer scale: a small grocer serving 100 house-

holds sees 20% price reduction; a larger grocer serving 1,000+ households sees

approximately 10%, with pure visibility contributing 5%. This value derives

from correlated demand shocks (weather, holidays) that historical forecasting

cannot predict but consumption monitoring can observe. The effect is robust

to prediction error: imperfect consumption-based forecasts perform nearly as

well as perfect demand information from auto-ordering commitments.

1 Introduction

Perishable goods present a fundamental inventory management challenge: grocers

must commit to orders days before knowing actual demand, yet unsold inventory

spoils. This uncertainty manifests as waste, which grocers recover through higher mar-

gins. The resulting price inflation is substantial—industry estimates suggest 30–40%

of perishable produce is wasted in the supply chain, with costs passed to consumers.

Industry initiatives to reduce this waste have documented significant returns: Cham-

pions 12.3, a coalition tracking progress toward UN Sustainable Development Goal

12.3, reports a median 14:1 ROI on food waste reduction investments across 1,200
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business sites, with leading retailers achieving 25–30% waste reductions (Champions

12.3, 2017).

We study whether demand visibility—advance knowledge of household consump-

tion needs—can reduce this inefficiency. The motivating technology is a smart re-

frigerator that monitors household inventory levels and predicts restocking needs.

By aggregating these signals across households, grocers could observe demand before

placing supplier orders, reducing both waste and the precautionary margins that fund

it.

Our contribution is threefold. First, we construct a simulation model that captures

the key economic mechanisms: stochastic household demand, perishable inventory

with quality degradation, grocer ordering under uncertainty, and cost-plus pricing

that passes waste costs to consumers. Second, we use factorial experimental design

to decompose the total value of the smart fridge system into components from demand

visibility versus operational improvements (markdown pricing, consumer behavior).

Third, we establish that the value of visibility is robust to prediction error, suggest-

ing that “soft” predictions based on consumption monitoring may be as valuable as

“hard” consumer commitments.

1.1 Related Work

Our work builds on two foundational literatures: inventory management under de-

mand uncertainty and supply chain information sharing.

1.1.1 Inventory Policy Under Uncertainty

The canonical framework for inventory management under stochastic demand derives

from Arrow, Harris, and Marschak (1951), who establish the optimality of (s, S)

policies for single-product inventory problems with linear costs. In their formulation,

the firm faces a trade-off between holding costs (from excess inventory) and shortage

costs (from unmet demand). The optimal policy is characterized by a reorder point s

and order-up-to level S: when inventory falls below s, order enough to restore to S.

Our implementation follows this structure. The grocer reviews inventory daily and

orders to an order-up-to level that balances service level (avoiding stockouts) against

waste from overstocking perishables. The key difference from the classical model is

that our “shortage cost” includes lost sales plus consumer substitution to competitors,
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while our “holding cost” includes actual spoilage—not merely opportunity cost of

capital.

1.1.2 The Value of Information Sharing

A central theoretical question is: under what conditions does demand information

create value? Lee, So, and Tang (2000) analyze a two-stage supply chain where the re-

tailer shares demand observations with the manufacturer. They formalize an intuitive

result: when demand is i.i.d., information sharing has zero value—observing current

demand provides no signal about future demand. Information sharing is valuable only

when demand is autocorrelated. Modeling demand as AR(1) with autocorrelation ρ,

they show that value increases monotonically in ρ, achieving approximately 20% in-

ventory reduction at ρ = 0.7. This reduction matters because inventory carries costs:

working capital tied up in stock, warehouse space, and—critically for perishables—

spoilage risk. A 20% inventory reduction translates directly to lower safety stock

requirements, freeing capital and reducing waste.

Gallego and Özer (2001) study a distinct information structure: customers who

place orders in advance of their needs, giving the firm direct knowledge of future

demand rather than observations to improve forecasts. Their work establishes that

state-dependent (s, S) policies are optimal when the system state incorporates this

advance demand information (ADI), and characterizes conditions under which ADI

creates operational value.

1.1.3 How Our Model Differs

The smart fridge provides direct visibility into future demand, not improved forecasts

from demand observations. This visibility operates through two mechanisms:

1. Consumption observation: The fridge monitors inventory levels and con-

sumption rates. Seeing that milk is at 15% remaining and depleting at a known

rate, the system predicts when replenishment will be needed. This is still fore-

casting, but from a richer signal than purchase history: the physical state of

the consumption cycle, not merely when the household last transacted.

2. Full autonomy (hard commits): The consumer grants the fridge authority

to auto-order. When inventory drops below a threshold, the fridge automatically
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schedules replenishment. This converts prediction into committed demand : the

grocer knows with certainty that household #47 will receive milk on Tuesday.

This is oracle knowledge, not forecasting.

As we show in Section 4.5, even noisy consumption-based predictions capture most

of the value of hard commits, suggesting that full autonomy is not strictly necessary.

The key implication: the value of smart fridge visibility does not depend on demand

autocorrelation. Lee, So, and Tang (2000)’s zero-value result for i.i.d. demand applies

when information means observing past demand to forecast future demand. The

smart fridge observes current inventory state—a signal that purchase history cannot

provide—and with full autonomy, bypasses forecasting entirely.

We validate this using the Instacart dataset (3.4 million orders, 206,000 users).

For staple essentials, what households buy is highly predictable (reorder rates exceed

70%), but when they buy exhibits high variability: inter-purchase intervals have mean

10.3 days with standard deviation 8.7 days (CV = 0.84). This timing uncertainty

is what inventory visibility solves. The slight negative autocorrelation in repurchase

intervals (ρ ≈ −0.17) reflects inventory depletion cycles—a household that last bought

milk 12 days ago is more likely to buy tomorrow—but this signal is directly observable

from current inventory state, not inferred from purchase patterns.

2 Model

We model a discrete-time economy with three agent types: households, a grocer, and

suppliers. Time is indexed by t ∈ {0, 1, . . . , T} where each period represents one day.

2.1 Products

Let M denote the number of SKUs, indexed j ∈ {1, . . . ,M}. Each SKU j has

attributes:

• ℓj ∈ N: supplier lead time (days between order and delivery)

• τj ∈ N ∪ {∞}: shelf life (days until spoilage; ∞ for non-perishables)

• cj ∈ R+: wholesale cost per unit
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We partition SKUs into categories (produce, dairy, meat, frozen, packaged) with

category-specific parameter distributions calibrated to grocery industry data. Ap-

proximately 60% of SKUs are perishable (τj < ∞).

2.2 Households

Let N denote the number of households, indexed i ∈ {1, . . . , N}. Each household i

has a preference mapping Pi from a subset of SKUs to consumption parameters:

Pi : Ji → R+ × R+ × N, Ji ⊆ {1, . . . ,M}

where Pi(j) = (µij, σij, qij) specifies:

• µij: mean days between purchases

• σij: standard deviation of inter-purchase times

• qij: typical purchase quantity

We write j ∈ Ji to indicate that household i purchases SKU j.

Inter-purchase times follow a Gamma distribution with shape α = (µij/σij)
2 and

scale θ = σ2
ij/µij. We calibrate µ = 10 days and σ = 9 days based on grocery purchase

frequency data, yielding a right-skewed distribution with substantial variance.

2.2.1 Demand Generation

We pre-compute a deterministic demand schedule D : {0, . . . , T} × {1, . . . ,M} → N
where D(t, j) is aggregate demand for SKU j on day t. This schedule incorporates:

1. Baseline stochasticity: Each household’s purchase timing is drawn from their

Gamma distribution.

2. Day-of-week effects: Weekend demand is scaled by 1.3; Monday demand by

0.8.

3. Correlated shocks: On 20% of days, a global demand multiplier is drawn uni-

formly from [0.7, 1.5], representing weather or local events affecting all house-

holds.
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4. Holiday effects: Major holidays (Thanksgiving, Christmas, July 4th) receive

demand multipliers of 1.3–1.8.

Pre-computing demand ensures identical realized demand across regimes, isolating

the effect of information rather than demand realization.

2.3 Grocer

The grocer maintains inventory, places orders, sets prices, and fulfills household de-

mand. Let Ij(t) denote inventory of SKU j at time t, and Oj(t) denote the order

quantity placed on day t (arriving on day t+ ℓj).

2.3.1 Inventory Dynamics

Inventory evolves as:

Ij(t+ 1) = Ij(t) +Rj(t)− Fj(t)−Wj(t)

where Rj(t) is units received from supplier orders, Fj(t) is units fulfilled (sold), and

Wj(t) is units wasted due to spoilage.

Each inventory unit carries a timestamp of receipt. Quality degrades non-linearly:

quality(a) = 1−
(
a

τj

)1.5

where a is days since receipt. Units with quality below 0.2 are discarded as waste.

2.3.2 Ordering Policy

We implement an (s, S) inventory policy. On each day, the grocer reviews inventory

position (on-hand plus in-transit) and orders to restore to target level Sj if position

falls below reorder point sj.

Regime 1 (Status Quo). The grocer forecasts demand using Facebook’s Prophet

algorithm with weekly seasonality, trained on observed sales history. The order-up-to

level is:

Sj = d̂j · (ℓj + r) + z · σ̂j ·
√
ℓj + r
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where d̂j is forecast daily demand, r = 1 is the review period (daily ordering), σ̂j is

forecast standard deviation, and z = 1.65 corresponds to 95% service level.

A key implementation detail is censored demand : when stockouts occur, observed

sales understate true demand. We impute censored demand using Prophet’s forecast

for stockout periods.

Regime 2 (Smart Fridge). The grocer observes future demand D(t′, j) for t′ ∈
{t + 1, . . . , t + k} where k is the commitment horizon. When lead time ℓj ≤ k, the

grocer has perfect demand visibility and orders:

Oj(t) = max

0,

t+ℓj+1∑
t′=t+1

D(t′, j) + buffer− Ij(t)− in-transitj(t)


with a 5% buffer for timing mismatches. When ℓj > k, the grocer combines known

demand for days t+1 through t+k with forecasted demand for days t+k+1 through

t+ ℓj.

2.3.3 Pricing

Prices follow a cost-plus model:

pj = cj · (1 +mwaste +mcomp +mprofit)

where mwaste = w/(1− w) recovers waste costs (with w being historical waste rate),

mcomp = 0.05 is competitive buffer, and mprofit = 0.10 is target profit margin.

2.3.4 Markdown Pricing

When enabled, items with quality between 0.2 and 0.6 are marked down by 50%. This

allows recovery of some value from aging inventory rather than complete spoilage.

2.4 Consumer Behavior

When households shop, they select items from available inventory. We model hetero-

geneous picking behavior:
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• Fraction λ of consumers are “freshness seekers” who select the newest items

(LIFO: last in, first out)

• Fraction 1− λ select the oldest items (FIFO: first in, first out), either by habit

or to claim markdown prices

This mixing is economically important: pure LIFO behavior causes older inventory

to age out, increasing waste even when total inventory is adequate.

3 Experimental Design

We employ a 2× 2× 2 factorial design crossing three factors:

1. Information regime: Prophet forecasting (Regime 1) vs. smart fridge visibil-

ity (Regime 2)

2. Markdown pricing: Disabled vs. enabled

3. Consumer picking: 100% LIFO (λ = 1) vs. 60% LIFO (λ = 0.6)

This yields four named conditions:

Condition Description Regime Markdown LIFO fraction

A Prophet / No markdown / LIFO 1 Off 1.0

B Prophet / Markdown / Mixed 1 On 0.6

C Smart Fridge / No markdown / LIFO 2 Off 1.0

D Smart Fridge / Markdown / Mixed 2 On 0.6

Condition A represents a “broken” baseline with suboptimal operations. Condi-

tion B represents best practices achievable without smart fridge technology. Condition

D represents the full smart fridge system.

3.1 Effect Decomposition

The factorial structure enables decomposition of total effects:
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• Pure visibility effect (A → C): Holding markdown and picking constant,

what does visibility alone contribute?

• Operational effect (A → B): Holding information constant, what do mark-

down pricing and realistic picking contribute?

• Total effect (A → D): Combined effect of all improvements.

• Incremental visibility effect (B → D): The policy-relevant comparison—

what does visibility add to an already-optimized baseline?

3.2 Simulation Parameters

Each condition is simulated with:

• N = 100 households

• M = 50 SKUs (60% perishable)

• T = 180 days (6 months)

• Commitment horizon k = 5 days

• 5 independent Monte Carlo replications (seeds 42–46)

• 30-day warmup period excluded from metrics to ensure steady-state measure-

ment

Initial inventory is calibrated to expected demand based on SKU popularity and

household count, avoiding initialization artifacts.

3.3 Outcome Variables

For each simulation run, we record:

• Waste rate: Spoiled units / ordered units

• Fulfillment rate: Fulfilled units / demanded units

• Price per unit: Total consumer spending / units purchased
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• Waste per household-day: Absolute waste metric, units/(households ×
days)

Price per unit is our primary outcome, as it directly measures consumer welfare

impact.

4 Results

4.1 Main Effects

Table 1 reports mean outcomes across 5 replications, using steady-state metrics (post-

warmup).

Table 1: Factorial Experiment Results (5 seeds, steady-state metrics)

Condition SS Waste Rate Fulfillment $/Unit

A: Prophet/NoMD/LIFO 2.9% 87.1% $8.45
B: Prophet/MD/Mixed 0.0% 87.8% $7.27
C: SmartFridge/NoMD/LIFO 12.3% 99.6% $8.72
D: SmartFridge/MD/Mixed 0.1% 100.0% $6.53

Several patterns emerge. First, the smart fridge regime dramatically improves

fulfillment (99%+ vs. 87–88%), confirming that demand visibility reduces stockouts.

Second, waste rates in Regime 2 are higher than Regime 1 when comparing analo-

gous conditions (C vs. A, D vs. B). We discuss this counterintuitive finding below.

Third, despite higher waste rates, Regime 2 achieves lower prices because fulfillment

improvements and markdown efficiency dominate.

4.2 Effect Decomposition

Table 2 decomposes price savings relative to condition A.

Two key findings emerge. First, the B → D comparison shows demand visibil-

ity contributes 10.2% price savings beyond what an optimized baseline achieves—a

meaningful incremental effect. Second, and more strikingly, pure visibility without

markdown pricing (A → C) actually increases prices by 3.2%. This reveals that

visibility’s value is contingent on complementary markdown pricing to clear aging

inventory.
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Table 2: Effect Decomposition

Comparison Price Savings Interpretation

A → C −3.2% Pure visibility (no markdown)
A → B 14.0% Markdown + picking effect
A → D 22.6% Total effect
B → D 10.2% Incremental visibility effect

4.3 Statistical Inference

For each comparison, we compute per-seed savings and construct confidence intervals.

Let p
(s)
X and p

(s)
Y denote price per unit in conditions X and Y for seed s. The savings

percentage is:

δ(s) =
p
(s)
X − p

(s)
Y

p
(s)
X

× 100

For the incremental visibility effect (B → D), we obtain mean savings of 10.2%

with 95% confidence interval [7.5%, 12.0%]. For the total system effect (A → D), we

obtain mean savings of 22.6% with 95% confidence interval [19.6%, 27.9%].

Notably, pure visibility without markdown (A → C) shows a negative effect, with

prices increasing by 3.6% on average (95% CI: −18.7% to +3.7%). The wide con-

fidence interval reflects the interaction between visibility and markdown pricing—

visibility alone is not sufficient.

4.4 The Waste Paradox

A striking finding is that steady-state waste increases with demand visibility when

markdown pricing is disabled: condition C exhibits 12.3% waste versus 2.9% for

condition A. This is a genuine phenomenon, not a measurement artifact.

The mechanism is as follows. With demand visibility, the grocer achieves near-

perfect fulfillment (99.6%) by maintaining adequate inventory. However, with 100%

LIFO consumer picking, the newest items are selected first, causing older inventory

to age out. In the status quo, frequent stockouts (87.1% fulfillment) “clear” aging

inventory before it spoils. Perfect demand visibility ensures the grocer orders the

correct quantity, but cannot eliminate the timing mismatch between item arrival and

consumer pickup—items age on the shelf while awaiting their committed buyer, and

freshness-seeking consumers bypass older stock.
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This finding has important implications. First, waste rate is a poor metric for

evaluating information systems; fulfillment and price are more appropriate. Second,

the value of visibility comes not from waste reduction per se, but from enabling

higher fulfillment at lower prices. Third, markdown pricing is essential—it steers

some consumers toward older inventory, reducing waste from 12.3% (C) to 0.1% (D).

Without markdown, visibility alone actually increases prices (the negative A → C

effect).

4.5 Robustness: Hard Commits vs. Predictions

A natural question is whether the value of visibility requires explicit consumer com-

mitments or whether predictions suffice. We compare two information models:

1. Hard commits: The grocer observes exact future demand D(t′, j).

2. Noisy predictions: The grocer observes D̂(t′, j) = D(t′, j) · (1 + ϵ) where

ϵ ∼ N(0, 0.15).

Table 3 compares B → D savings under each model (5 seeds).

Table 3: Hard Commits vs. Noisy Predictions

Information Model B → D Savings Fulfillment (D)

15% prediction error 9.3% 99.3–99.5%
Hard commits (0% error) 10.2% 99.8–100.0%

Difference +0.9pp +0.5pp

Hard commits yield only 0.9 percentage points additional savings. The gro-

cer’s safety stock buffers absorb prediction error effectively. This suggests that

consumption-based predictions—easier to implement than commitment systems—

capture nearly all the value of demand visibility.

4.6 Scale Dependence

A critical question for practical deployment is how visibility value scales with the

number of households served. We conducted a scaling analysis across six deploy-

ment sizes: 100, 250, 500, 1,000, 2,000, and 5,000 households, with 10 Monte Carlo

replications per scale.
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Table 4: Visibility Value by Deployment Scale (10 seeds each)

Households A → D Savings B → D Savings Std. Dev.

100 20.4% 9.2% ±3.3%
250 12.4% 5.6% ±1.3%
500 11.0% 5.4% ±1.5%

1,000 11.1% 5.6% ±1.3%
2,000 11.4% 5.9% ±1.4%
5,000 11.5% 6.0% ±1.5%

The results reveal a striking pattern: visibility value decreases sharply from 100

to 500 households, then stabilizes. We fit an asymptotic model of the form:

savings(n) = a+
b√
n

where a represents the asymptotic value that persists at any scale, and b/
√
n captures

idiosyncratic variance that averages out. For the pure visibility effect (B → D), we

estimate a = 4.7% with R2 = 0.58.

Interpretation. At small scale (100 households), individual household demand

is “lumpy”—a single household’s party or vacation creates substantial demand vari-

ance. The smart fridge observes these idiosyncratic events in real-time, while Prophet

forecasts from smoother historical averages. This information asymmetry is valuable.

At large scale, the law of large numbers operates: idiosyncratic household events

average out, making aggregate demand smoother and more predictable. Prophet’s

historical forecasts become reasonably accurate for aggregate demand, reducing the

marginal value of visibility.

The asymptotic value of approximately 5% arises from correlated demand shocks—

weather events, holidays, and other factors that affect all households simultaneously.

These shocks do not average out with scale. Prophet cannot predict them from his-

torical data, but the smart fridge observes them in real-time as consumption patterns

shift across households.

For practical deployment planning, this implies:

• Total system savings (vs. unoptimized baseline): approximately 10% at scale

• Pure visibility value (vs. optimized baseline): approximately 5% at scale
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• Variance in outcomes decreases with scale, making results more predictable

5 Discussion

5.1 Economic Interpretation

Our results support the hypothesis that demand visibility creates consumer surplus in

perishable goods markets, with two important caveats: (1) visibility must be coupled

with markdown pricing to realize its value, and (2) the magnitude of savings is scale-

dependent. The mechanism operates through three complementary channels:

1. Fulfillment improvement: Visibility enables 99–100% fulfillment versus 87–

88% under forecasting, reducing deadweight loss from stockouts.

2. Waste reduction through markdown: With markdown pricing enabled,

steady-state waste falls to near zero (0.1%), as aging inventory is sold at discount

before spoiling.

3. Margin compression: Lower waste rates and higher fulfillment allow lower

cost-plus margins.

At realistic deployment scale (1,000+ households), the total system effect (A →
D) converges to approximately 10% price reduction, with pure visibility contributing

roughly 5%. For a household spending $200/week on groceries with 40% perishables,

annual savings would be approximately $400 from the full system, or $200 from

visibility alone.

These are meaningful but modest savings—far from transformative. The value

proposition of smart fridge technology should therefore emphasize the combination

of (i) consistent 5% cost savings, (ii) near-perfect fulfillment eliminating stockout

frustration, and (iii) convenience from automated restocking. The savings alone may

not justify adoption; the full value proposition is multidimensional.

5.2 Connection to Theory

Our setting differs fundamentally from the classical information sharing framework of

Lee, So, and Tang (2000). Their model analyzes information sharing as a forecasting
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improvement : observing past demand helps predict future demand when demand

is autocorrelated. The value of information in their framework depends entirely on

autocorrelation structure—with i.i.d. demand, information sharing has zero value

because past observations provide no signal about the future.

The smart fridge operates through an entirely different mechanism: direct obser-

vation of future demand. By monitoring household inventory states, the grocer gains

oracle knowledge of what will be purchased, not better forecasts based on what was

purchased. A household with one day of milk remaining will buy milk tomorrow—

this is knowable regardless of whether purchase history exhibits autocorrelation. The

smart fridge bypasses the forecasting problem entirely, which is why autocorrelation

structure is irrelevant to its value.

The mechanism in our simulation is therefore distinct. The incremental price

savings from visibility does not arise primarily from better aggregate forecasting,

but from two complementary channels: (i) precise timing of individual household

needs enables near-perfect fulfillment (100% vs 88%), eliminating deadweight loss

from stockouts; and (ii) the combination of visibility and markdown pricing virtually

eliminates waste (0.1% vs higher rates without visibility).

However, our scaling analysis (Section 4.6) reveals an important nuance: these

benefits are most pronounced at small scale, where individual household events cre-

ate substantial demand variance. At large scale, idiosyncratic household events av-

erage out, and Prophet’s historical forecasts become reasonably accurate for aggre-

gate demand. The asymptotic visibility value of approximately 5% arises specifically

from correlated shocks—weather, holidays, and other factors affecting all households

simultaneously—that Prophet cannot predict but real-time monitoring can observe.

Critically, visibility alone is not sufficient—without markdown pricing, visibility

actually increases prices (the negative A→ C effect). The value of visibility is realized

through the synergy with markdown pricing, which clears aging inventory that LIFO

consumer picking would otherwise strand.

A corollary is that our results should not be interpreted as universal. The smart

fridge value proposition is specific to categories with persistent consumption patterns—

staples, perishables, and household essentials—where individual households have reg-

ular replenishment needs. Markets with genuinely unpredictable demand (fashion,

novelty items) or infrequent purchases would not benefit similarly.
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5.3 Limitations

Several limitations warrant discussion.

Single grocer. We model a monopolist grocer. Competition would accelerate

pass-through of cost savings to consumers but might reduce incentives to invest in

visibility infrastructure.

Homogeneous preferences. Households have idiosyncratic preference sets but

homogeneous parameters. Heterogeneity in price sensitivity or freshness preferences

could affect results.

No strategic behavior. Households do not respond strategically to the smart

fridge system (e.g., by gaming predictions). In practice, such responses might erode

information value.

Fixed commitment horizon. We fix k = 5 days. The value of visibility likely

varies with k and with the distribution of supplier lead times.

Conservative calibration to essentials. Our gamma distribution for inter-

purchase intervals is calibrated to essential groceries (milk, eggs, bread), which exhibit

the most routine purchasing patterns (CV = 0.84). Non-essential categories—meats,

frozen foods, specialty items—typically show higher timing variability due to event-

driven consumption (e.g., barbecues, dinner parties, seasonal cooking). Since the

value of visibility increases with timing uncertainty, our estimates represent a lower

bound. Category-specific modeling would likely show larger visibility effects for non-

routine purchases, though essentials dominate grocery volume.

5.4 Implementation Considerations

Our finding that noisy predictions perform nearly as well as hard commits has practi-

cal implications. A smart fridge system need not require consumers to make binding

commitments—passive consumption monitoring with predictive algorithms may suf-

fice. This substantially simplifies the user experience and reduces friction to adoption.

6 Conclusion

We have quantified the value of demand visibility in perishable goods supply chains,

with particular attention to how this value scales with deployment size. Our fac-

torial simulation study finds that smart fridge technology, combined with mark-

16



down pricing, yields meaningful but scale-dependent consumer price savings. At

small scale (100 households), total system savings reach 20%; at realistic deploy-

ment scale (1,000+ households), this converges to approximately 10%. The pure

visibility effect—incremental savings from demand information beyond operational

improvements—is approximately 5% at scale.

This scaling behavior has a clear interpretation: at small scale, individual house-

hold demand is lumpy and unpredictable, making real-time visibility valuable. At

large scale, the law of large numbers smooths aggregate demand, reducing the marginal

value of observing individual households. The asymptotic 5% value arises specifically

from correlated demand shocks (weather, holidays) that affect all households simul-

taneously and cannot be predicted from historical data.

A key finding is that visibility alone is not sufficient—without markdown pricing,

visibility actually increases prices. The value of visibility is realized through synergy

with markdown pricing, which clears aging inventory that consumer freshness-seeking

behavior (LIFO picking) would otherwise strand. These effects are robust to 15%

prediction error, suggesting that consumption-based predictions capture nearly all

the value of explicit commitments.

The key empirical insight underlying these results is the distinction between what

and when. Using Instacart transaction data (3.4 million orders, 206,000 users), we find

that what households buy is highly predictable—staple essentials have reorder rates

exceeding 70%. But when they buy exhibits high variability: inter-purchase intervals

have a coefficient of variation of 0.84, meaning timing is effectively unpredictable from

purchase history alone. This timing uncertainty is exactly what inventory visibility

resolves. The smart fridge observes current inventory state, not just past purchases,

enabling precise demand timing that history-based forecasting cannot achieve.

For practitioners considering smart fridge technology, our results suggest temper-

ing expectations: the economic value at scale is approximately 5% in pure visibility

savings, or 10% total system savings including operational improvements. These

are meaningful but not transformative. The business case for smart fridge technol-

ogy likely rests on the combination of (i) consistent cost savings, (ii) near-perfect

fulfillment eliminating stockout frustration, and (iii) convenience from automated

restocking—not on dramatic price reductions alone.
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A Simulation Algorithm

Algorithm 1 Daily Simulation Step

1: for each household i ∈ {1, . . . , N} do
2: Consume from household refrigerator inventory
3: end for
4: Grocer receives supplier deliveries due today
5: for each household i ∈ {1, . . . , N} do
6: Retrieve pre-computed demand D(t, j) for household i
7: if demand is non-empty then
8: Grocer fulfills order (LIFO/FIFO picking)
9: Household receives groceries
10: end if
11: end for
12: Grocer calculates spoilage (quality < 0.2)
13: Grocer marks down items with quality ∈ [0.2, 0.6]
14: Grocer finalizes daily demand history
15: Grocer places orders to supplier
16: if t mod 7 = 0 then
17: Grocer updates prices based on waste rates
18: end if

B Parameter Calibration
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Table 5: Simulation Parameters

Parameter Description Value

N Number of households 100
M Number of SKUs 50
T Simulation days 180
k Commitment horizon 5 days
µ Mean inter-purchase days 10
σ Std inter-purchase days 9
z Safety stock z-score 1.65
mcomp Competition margin 5%
mprofit Profit margin 10%
λ LIFO fraction (mixed) 0.6

19


	Introduction
	Related Work
	Inventory Policy Under Uncertainty
	The Value of Information Sharing
	How Our Model Differs


	Model
	Products
	Households
	Demand Generation

	Grocer
	Inventory Dynamics
	Ordering Policy
	Pricing
	Markdown Pricing

	Consumer Behavior

	Experimental Design
	Effect Decomposition
	Simulation Parameters
	Outcome Variables

	Results
	Main Effects
	Effect Decomposition
	Statistical Inference
	The Waste Paradox
	Robustness: Hard Commits vs. Predictions
	Scale Dependence

	Discussion
	Economic Interpretation
	Connection to Theory
	Limitations
	Implementation Considerations

	Conclusion
	Simulation Algorithm
	Parameter Calibration

